Coexistence of Magnetism and Superconductivity in Separate Layers of Iron-Based Superconductor Li1−xFex(OH)Fe1−ySe

نویسندگان

  • C. V. Topping
  • F. K. K. Kirschner
  • S. J. Blundell
  • P. J. Baker
  • S. J. Clarke
چکیده

The magnetic properties attributed to the hydroxide layer of Li1−xFex(OH)Fe1−ySe have been elucidated by the study of superconducting and non-superconducting members of this family of compounds. Both a.c. magnetometry and muon spin relaxation measurements of non-superconductors find a magnetic state existing below ≈ 10 K which exhibits slow relaxation of magnetisation. This magnetic state is accompanied by a low temperature heat capacity anomaly present in both superconducting and nonsuperconducting variants suggesting that the magnetism persists into the superconducting state. The estimated value of magnetic moment present within the hydroxide layer supports a picture of a glassy magnetic state, probably comprising clusters of iron ions of varying cluster sizes distributed within the lithium hydroxide layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coexistence of 3d-ferromagnetism and superconductivity in [(Li1-x Fex )OH](Fe1-y Liy )Se.

Superconducting [(Li1-x Fex )OH](Fe1-y Liy )Se (x≈0.2, y≈0.08) was synthesized by hydrothermal methods and characterized by single-crystal and powder X-ray diffraction. The structure contains alternating layers of anti-PbO type (Fe1-y Liy )Se and (Li1-x Fex )OH. Electrical resistivity and magnetic susceptibility measurements reveal superconductivity at 43 K. An anomaly in the diamagnetic shield...

متن کامل

New superconductor LixFe1+δSe (x ≤ 0.07, Tc up to 44 K) by an electrochemical route

The superconducting transition temperature (Tc) of tetragonal Fe1+δSe was enhanced from 8.5 K to 44 K by chemical structure modification. While insertion of large alkaline cations like K or solvated lithium and iron cations in the interlayer space, the [Fe2Se2] interlayer separation increases significantly from 5.5 Å in native Fe1+δSe to >7 Å in KxFe1-ySe and to >9 Å in Li1-xFex(OH)Fe1-ySe, we ...

متن کامل

Superconductivity and magnetism in iron sulfides intercalated by metal hydroxides† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05268a Click here for additional data file.

Inspired by naturally occurring sulfide minerals, we present a new family of iron-based superconductors. A metastable form of FeS known as the mineral mackinawite forms two-dimensional sheets that can be readily intercalated by various cationic guest species. Under hydrothermal conditions using alkali metal hydroxides, we prepare three different cation and metal hydroxide-intercalated FeS phase...

متن کامل

Influence of interstitial Fe to the phase diagram of Fe1+yTe1−xSex single crystals

Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear (π, 0) in the parent compound FeTe different from the collinear AFM order (π, π) in most iron pnictides. Study of the phase diagram of Fe1+yTe1-xSex is the most direct way to investigate t...

متن کامل

Superconductivity and magnetism in iron sulfides intercalated by metal hydroxides.

Inspired by naturally occurring sulfide minerals, we present a new family of iron-based superconductors. A metastable form of FeS known as the mineral mackinawite forms two-dimensional sheets that can be readily intercalated by various cationic guest species. Under hydrothermal conditions using alkali metal hydroxides, we prepare three different cation and metal hydroxide-intercalated FeS phase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017